OUANTUM COMPUTING STATE OF THE NATION

OPEN RHEIN MAIN 2019

MATTHIAS ZIEGLER

EMERGING & GROWTH ASGR AND TECHNOLOGY INCUBATION GLOBAL LEAD

SEPTEMBER, 2019

accenturetechnology

BEYOND ONES AND ZEROS

"WE ARE CURRENTLY IN THE MIDST OF A SECOND QUANTUM REVOLUTION:

THE FIRST GAVE US NEW RULES THAT GOVERN PHYSICAL REALITY.

THE SECOND WILL TAKE THESE RULES AND USE THEM TO DEVELOP NEW TECHNOLOGIES."

JONATHAN P. DOWLING

TAMING QUANTUM PHYSICS – APPLICATION: QUANTUM COMPUTER ON PREMISE AND CLOUD

cooler than outer space (2.6 K \approx -270°C): <0.1 K, fast electronics (GHz), the size modern transistors (10 nm)

TAMING QUANTUM PHYSICS – APPLICATION: FIRST COMMERCIAL QUANTUM COMPUTING SYSTEMS

Copyright © 2018 Accenture. All rights reserved.

TAMING QUANTUM PHYSICS - VISION: CLASSICAL SHORTCUT BY A QUANTUM DETOUR

CLASSICAL

QUANTUM

CLASSICAL

PERSPECTIVES ON SOLVING PROBLEMS WITH QUANTUM ADVANCED ANALYTICS

SIMULATION

OPTIMIZATION

CRYPTOGRAPHY DATA ANALYSIS MACHINE LEARNING

THE FUTURE **SCENARIO IS THAT** OUANTUM **COMPUTING WILL** AUGMENT **SUBROUTINES OF** CLASSICAL ALGORITHMS **THAT CAN BE EFFICIENTLY RUN ON QUANTUM COMPUTERS**

Copyright © 2018 Accenture. All rights reserved.

BIG RACKS IN THE BASEMENT? SPINNING HEADS ON THE FLOORS ABOVE? YOU FOUND A PLACE WITH QUANTUM COMPUTING POTENTIAL

Life Sciences ACCELERATING DRUG DISCOVERY WITH QUANTUM COMPUTING

GRAPH BASED MOLECULAR SIMILARITY METHOD

Financial Services

QUANTUM COMPUTING MAKES FAST WORK OF ARBITRAGE OPPORTUNITIES

QUANTUM

PORTFOLIO RISK ANALYSIS

Risk analysis and it`s algorithms support the understanding and quantification of potential losses (or gains) e.g. to protect against default.

Discover the potential and current state of quantum risk analysis to support decision making for risk managers.

TOOLS

- Quantum
- Quantum Simulator
- Classical computer

RESULTS

Risk Inpu

Experiment Data Set

Statistics of a set of financial assets, which are either randomly generated datasets or a collection of historical data*

Custom Enablement

Identify challenges along the quantum software stack from gate-level quantum back-end to web-application front-end

Problem specification

Quantifying portfolio investment risks to guide investment decisions depending on your risk threshold

*Historical data of government bond value development (https://www.investing.com/rates-bonds/germany-10-year-bond-yield-historical-data)

IBM **Q**

Profit and Loss

Profit and Loss Dis

0.000000

QUANTUM APPLICATION ARCHITECTURE GATE QUANTUM COMPUTING EXAMPLE

QUANTUM TECHNOLOGY INCUBATION

Utilization

QUANTUM TECHNOLOGY INCUBATION

Utilization

IMPLICATIONS ON SECURITY

MIBED https://www.wired.co.uk/article/quantum-computers-quantum-security-encryption The quantum clock is ticking on encryption – and your data is under threat

Quantum computers pose a major threat to the security of our data. So what can be done to keep it safe?

The Cryptography Stack by NIST

Applications	web browsing, cloud services, e-mail, messaging, VOIP, storage encryption,
Protocols (e.g. secure webserver-browser communication)	TLS, SSL, IPSec
Cryptography	Key exchange (RSA), encryption, authentication
Lower Level (Algorithms)	Libraries, block ciphers (AES, DES)

Is it time for a technology shift?

CLASSICAL CRYPTOGRAPHY

Copyright © 2018 Accenture. All rights reserved.

CLASSICAL CRYPTOGRAPHY -QUANTUM ATTACK CHANNELS

	Quantum Algorithm	Encryption & Decryption
Symmetric	Grover Search √ <i>N</i> speed-up for key search ← AES-128 – 64-80 bit security	ALICE Alice's Confidential Data + 987491043735a66c 24D97009 = Alice's Encrypted Confidential Data BOB Alice's Confidential Data = 987491043735a66c 24D97009 - Alice's Encrypted Confidential Data Data - Alice's Encrypted Confidential Data - Alice's Encrypted Confidential Data - Alice's Encrypted Confidential Data - Alice's Encrypted Confidential Data - Alice's - Alice's - Confidential Data - Alice's - Confidential Data - Alice's - Confidential - Confidential
Asymmetric	Shor Algorithm exponential speed-up for prime factorization RSA – close to 0 bit security	BOB Hello Alice! + Encrypt + & Alice's Public da73464ba782b68a 08E03CE4 ALICE Hello Alice! + Decrypt + & Alice's Private

PHASE 1: POST QUANTUM CRYPTOGRAPHY

Theoretical Concept: e.g. Hash functions

Implementation: National Institute of Standards aims for draft standards between 2022-2024

PHASE 2: QUANTUM COMMUNICATION

Illustration: Erik Vrielink

Proof-of-Concept

- 2700 km Sattelite transmision
- China trusted network
- 1.5 kbps 200 km optical cable

Industrial Implementation

- Transmision rates in optical fibre technology:
 - 10 MBit/s for 10 km
 - 100 kBit/s for 100 km
- Post-Quantum Encryption
 - post quantum computing-safe tape drive prototype Credit: IBM

NEXT STEPS

PREPARE FOR THE ARRIVAL OF MAINSTREAM QUANTUM COMPUTING BY CONDUCTING BUSINESS EXPERIMENTS USING QUANTUM COMPUTATION

QUANTUM COMPUTING. APPLIED NOW.

LEARN MORE

Accenture Labs

accenture

www.accenture.com/quantum

